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The pressure in the gaseous, the isotropic liquid and nematic liquid crystalline states, as well
as the isotropic-nematic transition temperature are calculated for a model system composed of
non-spherical particles. The potential is a generalization of the Lennard—Jones interaction where
the attractive part depends on the relative orientations of the particles and the vector joining
their centers of mass. Point of departure is an augmented van der Waals approach. It involves
a modified Carnahan-Starling expression associated with the repulsive part of the interaction,
and an orientation dependent second virial coefficient, as well as the orientational distribution
functions of a pair of particles, linked with the attractive part of the potential. In a high temperature
approximation, and for a special choice of model parameters, results are presented and displayed

graphically.
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1. Introduction

Recently it has been demonstrated [1] that an aug-
mented van der Waals theory yields good results, over
a large density range, for the equation of state of the
Lennard—Jones fluid when the short-range repulsive
part of the interaction potential (WCA) [2] is taken
into account by a modified Carnahan—Starling (CS)
equation of state [3, 4]. Reasonable estimates for the
gas-liquid coexistence and for the critical temperature
can be made. Here this approach is extended to a cer-
tain type of model potentials for molecular liquids and
liquid crystals. Estimates for the isotropic—nematic
transition temperature are given. Though many details
are rather different, the theoretical treatment of liquid
crystals given here is in the spirit of [S] and [6]. In view
of the astonishing variety of chemical compounds
showing liquid crystalline phases and the complexity
of the meso—phases, the study of new model systems,
in addition to the well established ellipsoidal, sphero—
cylinder [7 - 11] and Gay—Berne models, [12, 13] is
desirable. Due to its simplicity, the present model is
well suited for computational studies of the phase be-
havior of liquid crystals in restricted geometries [14]

and of transport processes [15]. The need for the anal-
ysis of new models for liquid crystals is also reflected
by recent generalizations of the Lebwohl-Lasher [16]
lattice model [17, 18].

This article is organized as follows. In Sect. 2, the
model potential is introduced. Essentially, it is a gen-
eralized Lennard-Jones potential where the r~5-part
depends on the relative orientations of the axes of
the interacting molecules and the vector joining their
centers of gravity. Various types of anisotropy of the
interaction are taken into account. Then, in Sect. 3,
the augmented van der Waals expressions for the free
energy and the pressure are presented. An orientation
dependent second virial coefficient and the orienta-
tional distribution functions of a pair of particles occur
in these expressions. The short range repulsive part
of the interaction is taken into account by a modified
Carnahan-Starling approach. The difference between
the free energy in the nematic and isotropic phases,
as well as the equilibrium alignment are discussed.
Finally, for a special case of the non—spherical in-
teraction and subject to a high temperature approxi-
mation, the pressure in the gaseous, in the isotropic
liquid and in the nematic liquid crystalline phases, as
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well as the isotropic—nematic transition temperature
are computed and displayed graphically in Sect. 4.
Some formulae needed in the calculations are given
in the appendix.

2. The Model

A fluid composed of (effectively) axisymmetric
particles is considered. The binary interaction poten-
tial @ depends on the relative position vector r joining
the centers of mass of two particles and on the unit
vectors u; and u; specifying the directions of their
figure axes. In general, the potential can be decom-
posed into an orientationally independent spherical
part PP = $Ph(r) and a non-spherical or anisotropic
part @anis - Qal’liS(,’.’ ug, uy):

B(r,uy, uy) = PP + 2, (1)

The (unconditional) orientational average of panis
vanishes: ("), = 0, where

(.o =(47r)_2/d2u1/d2uz... : )

As spherical interaction we choose the Lennard—Jones
(LJ) potential

S (r) = 40y (1 /ro) "2 = (r/10)™®). 3)

The quantities @ and 7y set the characteristic energy
and length scales. A characteristic temperature linked
with this energy is kpTrs = Po. For Argon, e.g.,
one has T = 120 K and r¢ = 0.34 nm. The Lennard-
Jones (LJ) potential, cut off in its minimum and shifted
such that it is zero at the cut—off distance r., was
used by Weeks, Chandler and Anderson (WCA) [2]
as a purely repulsive reference potential. The WCA
potential is given by

PVCA(r) = 4By (1 /10)™ "2 — (r/10)~®) + &y,

F < Ten = 2070 2 1.1227, 4)

and @wca(r) =0 forr > rey.

In numerical calculations and in the graphs dis-
played here, all physical quantities are expressed in
the standard LJ units of [19 - 25], e.g. lengths and
energies are given in units of ro and @3. When no
danger of confusion exists, the dimensionless vari-
ables will be denoted by the same symbols as the
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original quantities. Then the LJ and WCA poten-
tials read (1) = 4(r~12 — =), and SVCA(r) =
4 2 —r= 841, r < 1oy =26, ¢WCA(r) = 0 for
r > rcw. The number density n = N/V and the tem-
perature T are in units of 7’ 3 and &/ kg, respectively.
The unit for the pressure is $o 7.

The angle dependence of the anisotropic part of the
interaction is described in terms of rotational invari-
ants constructed from irreducible cartesian tensors of
rank ¢ depending on the components of the unit vec-
tors u;, uy and # = 7~ ! r. In cartesian component no-
tation, conveniently normalized tensors of rank ¢ = 2
and ¢ = 4 are

‘p,u.u(u) = <2 uuuu ) (puu)uc(u) = <4 uuuuu)\un ) (5)

repectively, with {, = 1/(2¢ + 1)!!/£!, in particular

15 1 3
<z=\/;=5\/ﬁ<4=1\/7_0. (6)

The symbol ~—7 indicates the symetric traceless part
of a tensor, e. g. for the dyadic constructed from the
components of two vectors a and b one has

a,b, = E(G" b, +a,b,)— §a,\ b O, @)

where 8, is the unit tensor. The summation conven-
tion is used for Greek subscripts. Upon the assump-
tion that the anisotropic part of the potential has a
radial dependence proportional to that of the long-
range part of the Lennard—Jones potential and taking
into account the first five rotational invariants com-
patible with the head—tail symmetry of nematics, we
make the ansatz

S = 4% (1 /10) " W(uy,ug, 7), ®)
V(up,uz, ) = €19 (w1) P (u2)
+ €2 [0 (WD) (F) + 0 (u2)0, (7)]
+ €30 (U)o (u2)pru(?) )
+ €40uan(W)Puac(u2)

+ 6530;1.1/(“1)@AN(UZ)‘P;LUAK('F)'

The coefficients €, 5, also refered to as non—
sphericity or anisotropy parameters, characterize the
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strenght of the various types of anisotropy consid-
ered here. The angle dependent terms in (9) are
proportional to the rotational invariants S?20, 5202 4
§022 6222 G440 and S224 used by Stone [26]. Similar
tensors and scalar invariants were used in the kinetic
theory for gases of particles with spin and scattering
theory [27], as well as in the theory of the phase behav-
ior [28] and the calculation of elasticity coefficients
of nematics [29]. For generalizations, also to other di-
mensions, see [30]. Furthermore, notice that one has
Puv(1) @uu(u2) =5 Py(u; - up) where P, is the sec-
ond Legendre polynomial. The normalization factors
(e are chosen such that the “square” of the tensors
of rank £ is equal to 2¢ + 1, e.g. ¢, (u) pu.(u) = 5.
The Maier—Saupe model [31] corresponds to the case
€ >0and e; = €3 = €4 = €5 = 0. For u; = u; = u,
(9) reduces to ¥(u, u, #) = ¥(u, #) with

1
Y(u, ) = 5€; + e + [252 + 5(263] P (WP (7)

+ GG s Puan@ Puae@®.  (10)
The potential model for perfectly oriented particles
(u = const) presented in [15] and [32] corresponds
to (10) with Se; +9¢€4 = —1, 65 = 0, and € = 2¢; +
%Czq < 0 and € > O for prolate and oblate particles,
respectively. A transition from the nematic to smectic
or columnar phases occurs for this special system. The
viscous behavior in the vicinity of the phase transition
has been studied [15, 32, 33]. Here, we consider fluids
with variable orientation and restrict our attention to
the isotropic and nematic phases.

The physical meaning of the potential model is
obtained by considering the special ee- (end—end),
ss- (side-side), T-, and X-configurations correspond-
ing to the cases w; = uy; = #, u; = up L1 7,
u; L u; = #, and u;,u,,7 mutually perpendic-
ular, respectively. In this case, the potential assumes
the form

P =49 ((r/ro)™ "~ (r/r)"°E.), (D)
with the coefficients E_ for the main configurations
given by

5 12
Eee =1 +5€1 + 1062 + 5(263 +9E4 + 7(465, (12)

5 9
FE=1+5¢ —5¢; — 84263 + ¢4 + -I—Z<465, (13)
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Fig. 1. The potential curves for the principal orientations
as functions of the distance r. The physical quantities are
in standard LJ units. The top and bottom graphs pertain to
€ = 0.04, € = —0.04, and € = 0.04, € = —0.08. The
curves with the deepest and shallowest minima correspond
to the ss- and ee—orientations, respectively. The thin curve
is the spherical Lennard—Jones potential. The dash—dotted
and dashed curves are the potential functions for the T- and
X-orientations. In the top figure, the T-curve coincides with
the ee-curve.

5 5 5 27 9
Er=1- 561 + E € = 8 4263 + ?64 - ﬁc4€57 (14)

5 5 27 3
Ex=1- 561 —S5e6+ 3(263 + —8-64 = ﬁc‘;fs. (15)
The minimum of the potential is at rp;, =
r0(2/E.)"8, provided that E_ > 0. The well depth
of the potential in the corresponding configuration is
E? &,.

In the following, the special case €3 = €4 = €5 =0
is discussed in more detail. Then one has

Br=1— By~ 1)/2, Bx=1= (B — 13/2. (16)
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For “prolate” particles the side—side configuration is
energetically favored over the end—end configuration:
Ey > FE... This is realized for ¢, < 0. Likewise,
oblate particles are modelled by €, > 0. The example
E. = 1/2, Ei = 2, and consequently Et = 1/2,
Ex =5/4 corresponds to €; = 1/10 and e, = —1/10.
Similarly, oblate particles with E.. = 2, Es = 1/2,
and consequently Et = 5/4, Ex = 1 /2 pertainto ¢; =
O and ¢; = 1/10. The case ¢; = 1/10 and €; = 1/10
leads to oblate particles with F.. =5/2, Ei = 1, and
consequently Er = 1, Ex = 1/4.

Examples for potential curves with particles in the
principal orientations discussed above are displayed
in Fig. 1 as functions of the distance 7. The top and
bottom figures pertain to €; = 0.04,¢; = —0.04 and
€1 = 0.04,¢; = —0.08. The curves with the deepest
and shallowest minima correspond to the side-side
(ss) and end—end (ee) orientations, respectively. The
thin curve is the spherical Lennard—Jones potential,
shown for comparison. The dash—dotted and dashed
curves are the potential functions for the X- and T-
orientations. For €, = —e, as in the top figure, the
T-curve coincides with the ee-curve.

The energetic situations for particles in the princi-
pal relative orientations depicted in Fig. 1 can be re-
garded as characteristic for nematogenic molecules.
These molecules, however, have a typical length to
width ratio of about 3 which is significantly larger
than that one inferred from the positions of the min-
ima of the ee- and ss-potential curves in Figure 1.
Thus when one compares with real substances, the
non-spherical particle used here should be identified
with a small cluster of strongly correlated or asso-
ciated molecules, packed side by side, rather than a
single molecule.

3. Free Energy and Pressure
3.1. General Remarks

Just as the total internal energy is a sum of the
average kinetic and potential energies, most thermo-
mechanical properties are composed of kinetic and
potential contributions. The first one is often referred
to as ideal gas contribution, the latter ones are some-
times also called excess quantities or configurational
contributions. The entropy, and consequently the free
energy of nonspherical particles also contains an ad-
ditional ideal, i.e. single particle contribution, associ-
ated with the orientation of the particles.
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Let n = N/V be the number density of the fluid of
N particles confined to the volume V. The free energy
F = F(T,n) = N f(T,n), where f = f(T,n) is the
free energy per particle, is written as F' = Fin 4 for 4
FPt and f = fkin 4 for 4 PO The kinetic and ori-
entational contributions are f¥" = kgT(In(nA?) - 1)
where A\ ~ T''/2is the thermal de Broglie wave length,
and

for = kgT / p In(p/po) d*u. a7
Here, p = p(u) is the orientational one—particle distri-
bution function with the normalization [ pd*u = 1.
The random orientation of an isotropic fluid corre-
sponds to po = (4m)~ L.

The pressure is obtained from the free energy ac-
cording to

Zaf
=
p=n a s

(18)
In general, p is a sum of the kinetic contribution p*® =
n kgT and the potential contribution pP** associated
with fP°" which, in general, depends on the average
orientation of the particles.

The potential used here can be viewed as a sum
of the short range WCA potential and a long range
“distortion” potential

dsdis =@ — ¢WCA ) (19)
The potential contributions to the free energy and
pressure can be decomposed accordingly:

fpol - fWCA + fdis ppot — pWCA +pdisv (20)
For spherical particles, several pertubation schemes
have been devised for the calculation of the distortion
parts [2, 34, 35]. With a good expression available
for the WCA parts, it has been demonstrated that a
simple educated guess for p¥* gives surprisingly good
results for the pressure of the LJ gas and liquid [1].
Before this approach is generalized to the anisotropic
potential functions discussed above, some remarks
are made on the WCA reference system.

3.2. WCA Fluid as Reference System

For hard spheres with diameter d, the Carnahan—
Starling (CS) expression [4] for the pressure, which



S. Hess and B. Su - Pressure and Transition Temperature of Model Liquid Crystals

fits simulation data over the entire density range of
the fluid phase rather well, implies fP* = 5 :=
kgT{nB"* /(1—nv)+[nv/(1—nv)]*}. Here B™ = 4v
and v = (m/6) d> are the second virial coefficient and
the volume of a particle. For a fluid of particles with a
short-range repulsive interaction ¢(r) like the WCA
potential, the CS expression for fP°* is modified by
using the virial coefficient BYA = BVCA(T) for the
WCA potential. For spherical particles, in general, the
second virial coefficient is computed according to

By(T)=2m / h (1 — exp(—¢(r)/ksT)) r* dr. (21)
0

Furthermore, in the modified CS expression, the
volume v is replaced by an effective temperature—
dependent volume ve(7"), given by

veer(T) = (m/6) d3ys , (22)
with the effective diameter dess = de(7") determined
by the distance where the binary interaction potential
is equal to the thermal energy kg7

(desr) = kpT. (23)

This implies, for the WCA potential,

vese(T) = %rg (2/ (1 + (ksT/By)"/ 2))1/2. 24)

Notice that B¥CA = 4u.4, in contradistinction to
hard spheres, where one has B = 4v. The difference
between BWCA /4 and v is not large but crucial for
the quality of the fit for the pressure data [3]. The
frequently used recommendation of Barker and Hen-
derson [35] for the computation of an effective diam-
eter yields an effective volume which is just slightly
smaller than BWCA /4 but larger than the ves em-
ployed here.

The potential contribution to the free energy of the
WCA system is

e (1)
fvnf::eff(T) )2) - (23)

The resulting potential contribution to the pressure of
the WCA fluid is

TLBWCA(T) (
1

WCA
=kgT
f B (1 — nesr(T)

nBWCA

(1 — nveg)?

(nvegs )2
(1 — nveg )3

pVCA = kBT( ) (26)
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This expression for the pressure agrees very well with
computer simulation data [3], available in the density
range 0.17 d<n< 1.1ry 3 and for the temperatures
T = O.STref, T,—ef, 2Trcf, where ﬂef = ¢0/k3. A sim-
ilar remark applies to the internal energy computed
from (25). The densities ng and ny, where the fluid
phase coexists with the fcc solid phase, at T = T,
are ng = 0.9175>, ng, = 0.97r;>.

3.3. Augmented van der Waals Approximation

The potential contribution to the pressure of the
model system is written as pP*t = pWCA 4+ pdis  The
simplest choice for the distortion part of the pressure

is the augmented van der Waals expression [1],
pdis = kIBT 7L2 (B _ BWCA) ’ (27)

with the orientationally averaged virial coefficient

B / / Blu; - u)p(u)p(ua)Puid?u;  (28)

and the orientation dependent coefficient

1
B('u.l -u2) = 5 /(1 —CXp(—Q(’I‘, u, uz)/k'BT)) d3’f‘.
(29)
The orientational distribution is written as

p(w) = po (1 + x(w)), po = (4m)~", (30

where y(u) is a measure for the deviation of p from
its value po in the isotropic state. The average virial
coefficient evaluated for an isotropic state is Bjs, =
(B)o. Then (27) can be decomposed into parts which
are non-zero in an isotropic state and contribution
associated with an average molecular alignment as
occurring in the nematic phase:

dis dis
iso + pa]ign

= kT n? (Biso — B¥?) + kgTn* H

=p 31)

with
H = ([B(u; - u3) — Biso] x(u1)x(u2))o. (32)

This expression for the quantity H is equivalent to

H=—@m [ [ enstrsur,u xn xw)

- d?uyd®uydir. (33)
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The anisotropic part of the direct correlation function
Canis here is given by

—Canis(T, w1, w2) = (34)
anis anis @sph
[(exp(— kBT)>0 — exp(— T )] exp(— kBT)'

As before, (.. .)¢ indicates an orientational average
in an isotropic state.

Equation (27) guarantees the correct behavior of
the pressure in the low density limit. However, it is
also a good approximation for high densities since
the high density behavior is dominated by the WCA
part. The pressure p = nkpT + pVCA + p%s with pdis
given by (27) is referred to as the augmented van der
Waals equation of state. Notice that one has Bjy, =
Bgph + Bais where Bgpyh is the virial coefficient for the

150

spherical potential, and B2 is the contribution to the
virial coefficient in the isotropic state associated with
the anisotropic part of the potential. This quantity is

given by

et 1 anis 45sph g
Biso = 5/ (1 - <6Xp(— kBT ))O) CXP(— kBT)d T.
(35)

3.4. Free Energy and Equilibrium Alignment

The distortion part of the free energy pertaining to
the pressure (27) is

9% =nkgT (B - BY*) = f& 4 nkgT H, (36)
in analogy to (31) and with H given by (32) or (33).

The equilibrium alignment of the molecules van-
ishes in the isotropic phase, but it is finite in the
nematic phase. The alignment, in principle, can be
computed from the condition df/8p(u) = 0, which
implies In p(u) ~ —2n [ B(u-u;)p(uz)d*u,. Instead
of solving this equation, subject to the normalization
condition for p, one may consider the free energy as
a function of the relevant alignment tensors of rank
¢ and calculate their equilibrium values by minimiz-
ing the free energy. For liquid crystals, the second
rank alignment tensor a,,, frequently also denoted
by Q... plays the role of an order parameter. This
tensor is defined by

Ay = (Puu(w)), (37

S. Hess and B. Su - Pressure and Transition Temperature of Model Liquid Crystals

where (...) indicates an orientational average evalu-
ated with the distribution function p(u). Higher rank
tensors, e.g. of rank ¢ = 4,6, ... are defined analo-
gously. The equilibrium alignment is to be inferred
from df/da,, = 0, and from similar relations in-
volving the higher rank tensors. The alignment ten-
sors specify the relative deviation x = (p — po)/po of
the orientational distribution from its isotropic value.
More specifically, the expansion with respect to the
orthonormalized expansion tensors ¢ (5) reads

x() = (p = po)/po (38)

=0Quy Sopu(u) +auvak (pu.u)\lc('u') +....

The expansion coefficients are the above mentioned
¢-th rank alignment tensors which are defined in anal-
ogy to (37). Here we disregard all tensors of rank
¢ > 6. Insertion of the expansion for the distribution
function into the expressions for the free energy leads
to f = fiso + falign- The part of the free energy, asso-
ciated with the alignment (it vanishes in an isotropic
state), is given by a Landau—de Gennes type expres-
sion [28]

o _ | :
‘]{:;;:l = -2-'.42 a/;“/all-l/ - 3\/6‘30 a#'/a"’\a’\u'

1 1
+ ZCO (auvap,u)z + _A4 Qpuprk Auvrs (39)

2

1
== g\/7_ODQ(Lu,,a,\,{a‘“,/\K Fiam w

The coefficients By = v/5/7, Co = 5/7, and Dy =
3/7, already presented in [28], stem from the single
particle orientational entropy f°", cf. (17). The coeffi-
cients A, and A4 also contain contributions involving
the interaction of the particles, viz.

1
Ay=1- e /(Cams(hux,uz)ﬂpuu(ul)@uu(uz))o

- dr, (40)

and

1
Ay = 1-ng/(canis("'vul»u2)cp,uu)\n(ul)¢uw\»c(u2))0

- d’r. (41)
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Fig. 2. The order parameters S, and S4 as functions of the
temperature for the reduced number density n = 0.7. The
anisotropy parameters for the potential function are €; =
0.04,¢; = —0.08. The physical quantities are in standard
LJ units.

L15

In the nematic phase in equilibrium, the alignment is
uniaxial. This means that the alignment tensors are
proportional to tensors composed of the components
of the (space fixed) unit vector n, which is referred to
as director. In particular, one has

3 r— 2
Ay = \/;az Nu Ny, Quy Gy = 05, 42)

where the magnitude of the second rank tensor is
proportional to the Maier-Saupe order parameter
Sy =< Py(u-m) >, viz. ap = V5 S,. Similar re-
lations hold true for the forth rank alignment tensor.
Its magnitude a4 is linked with Sy =< Psy(u - n) >
according to a4 = 3.S4. With this notation, the free
energy (39), in a uniaxial state, reduces to [28]

Jali 1 1 1 1
k‘aB;:l §A2a§ = 530(1%"’200034’514402
— Doalag +.... (43)

Minimization of this alignment free energy leads
to ag = (Do/Aqs)a3, provided that A, > 0, and

a; = 0 or a; = (Bo/ZC)(l + \/1 —4A2C'/B%),

depending on whether the temperature and density
dependent coefficient A, is larger or smaller than
Ag = ZBg /(9C). Here, the coefficient C is given
by C = Cy — 2D3/A4. At the temperature Ty where
the isotropic phase coexists with the nematic phase,
the magnitude of the second rank alignment tensor is
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equal to ag = 2By/(3C). This corresponds to S, =
(2/15)(1 — (18/35)A4(Tx)~")~! > 14/51 =~ 0.28,
at the transition temperature. The inequality follows
from A4 < 1. The value 27/35 for A4(Tk) implies
S> = 0.4 which is typical for many nematics just
below the transition temperature. To provide an ex-
ample, the order parameters S, and S4 are shown in
Fig. 2 as functions of the temperature, for the number
density n/n.s = 0.7. The anisotropy parameters for
the potential function are €; = 0.04,¢, = —0.08. The
curves have been computed in the “high temperature
approximation” to be discussed below.

The pseudo—critical temperature 7* where one has
A, = 0is slightly smaller than the transition temper-
ature. The calculation of 7™, to be presented later,
provides a lower bound on the transition temperature.
The the pase behavior and the pressure in the vari-
ous phases are studied next, subject to reasonable and
manageable approximations.

4. Gas, Liquid and Nematic Liquid Crystal

In order to obtain reasonable estimates for the tran-
sition temperature and for the pressure in the isotropic
and nematic phases, a “high temperature approxima-
tion”, with respect to the anisotropic part of the in-
teraction potential, is used in the following. More
specifically, exp[—®"*/kgT] is expanded up to sec-
ond order in ¢ /kpT'; the spherical part of the in-
teraction potential, however, is taken into account in
all orders.

4.1. High Temperature Approximation

The coefficients A, and A4 ocurring in the free
energy are computed next, with c,pis replaced by the
high temperature approximation:

anis

T, wr, ) = [ = Bk T) ™ 4 2 (@

— (@)2)0) (kT)*] exp(— 8™ /knT). (44)

Insertion of this expression into (40) and (41), with
the anisotropic part of the potential given by (8) and
(9) yields

7 I n

A . WO P .
. T T2 ny’ 45

/5 ) n

= [ " PR S

A T ~ T2 Ta
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Fig. 3. The integrals I; and I as functions of the temperature
(in reduced units).

The characteristic quantities 77,73, Ty, Tap, which
have the dimension of a temperature, are deter-
mined by

keT1/®o = € nrg I, (kpTa/Bo)* = ey nrd L, (46)

2
€ = —6% + 6% 63 A= C2€2€3
T 56
47)
+% e+ 8o, 186 €
77 ¢ 492 e
and
kpTs/®o = eanraly, (kgTua/Po)* = exnryly, (48)
53,530,795 1, 10
== — —_— 49
€= 76+ 5t o1t gg€s T 7 aree (49)

The dimensionless quantities I}, I, are abbreviations
for

n=ar5? [ /r0 expl-2" fiaDd'r, - (50)

I = 165> / (r/r0)~ 2 exp(—®~ /kpT)dr.

The characteristic number densities n, and n4 are
determined by

ny =157 ((@o/ksTer]; + (@o/ksT) € 12) , 1)

-1

ng =7y (So/kpTeals + (Po/kpT) e ]s) . (52)
Formulas given in the appendix have been used. In
the following, the consequences of the high tempera-
ture approximation are exploited for the special case

S. Hess and B. Su - Pressure and Transition Temperature of Model Liquid Crystals

where €3 = ¢4 = €5 = 0. The dependence of the quan-
tities I1, I on T' is shown in Figure 3.

4.2. Estimate for the Isotropic—Nematic Transition
Temperature and Density

When the temperature dependence of 77,75 is ig-
nored, the pseudo—critical temperature 7™ inferred
from A; =0 is, for ¢; > 0, given by

T %Tl (1+a+ad/TH ). (53
For ¢; = 0, but ¢; # 0 one has T* = T,. An order
of magnitude estimate of the dependence of T on
€1 and ¢, is obtained with I; =~ 30, I, ~ 50 (at the
reduced temperature 7" = 1 one has I; = 31.7 and
I, = 52.9, cf. Fig. 3), and for nrj = 0.67:
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This leads to T* =~ 22,25,28 ¢, for €;/¢; =
0, —1, —2. Thus the transition temperature is mainly
determined by €;. The value for ¢; = 0.04 implies a
reduced transition temperature = 1. A nonzero value
of ¢, leads to an increase of 7. In Fig. 6, the thick
line on the right indicates where one has A, = 0, in
the temperature—density plane, for a specific choice
of the non—sphericity parameters.

7

~10e (1+(1+ (1+ (54)

4.3. Shift of the Critical Temperature

Of course, the van der Waals theory cannot describe
correctly the fluctuation—-dominated behavior in the
immediate vicinity of the critical point of a real fluid.
Nevertheless, estimates of the critical temperature and
density, T, and n., from mean—field theory are quite
useful. The simple augmented van der Waals equation
of state with the distortion part of the pressure given
by (27) implies T, ~ 1.28T%, n. =~ 0.25n.¢, and
pe/(nckpTe) =~ 0.33 for the LJ fluid.

A shift of 7, due to an anisotropic potential is
caused by B2 # 0. In the high temperature approx-
imation with respect to the anisotropic part of the in-
teraction, in the spirit of the Barker—Pople expansion
[36, 37], one obtains

Bams .
iso ™

“% /((Spa"is/kBT)z)o exp(—P*" /kgT) d*r

= —eo (Po/ksT)* 13 I (55)
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Fig. 4. The pressure in the isotropic state as function of
the density for the reduced temperatures 7' = 1.38 (left)
and 1.28 (right) for the model system with €; = 0.04, ¢, =
—0.08. The dashed curves pertain to the Lennard—Jones
liquid. The higher temperature is the critical temperature
of the model liquid crystal, the lower one is the critical
temperature of the LJ-fluid. The physical quantities are in
standard LJ units.

with

35,

5 5 9 9
2 - Z§63+§€26263+26§+26§.(56)

€l+—62+

€02 = )

4
Again, formulas given in the appendix have been
used. An estimate for B2 is given for the spe-
cial case €3 = ¢4 = ¢5 = 0. With I, = 50 and
€1 = 0.05, one finds B¥s/r3 ~ —1/6,—1/2,-3/2
for e;/€; =0, —1, —2, respectively. In the expression
for the pressure, these numbers for B2 have to be
compared with By, — BYA =~ —673, for the LY
potential. Notice that B{%* < 0 leads to an increase
of both the critical temperature and density. Specific
examples for pressure curves in the isotropic phase of
the model liquid crystal with €; = 0.04,¢; = —0.08,
are displayed in Fig. 4, together with the pressure
for the LJ-fluid (dashed curves). The temperatures
have been chosen such that they correspond to the
critical temperatures of the liquid crystal and of the
LJ-system, viz. T/ T ¢ = 1.38, (left) and 1.28 (right),
respectively.

4.4. Pressure in the Isotropic and Nematic Phases

The present approach allows the calculation of the
pressure both in the isotropic and nematic phases.
In the first case, the pressure is piso = pV* +
n2 kgT (Bsph — B¥CA) + n? kpT, Bie®", in the sec-
ond case, one has the pressure ppem = Piso + pgllisgn
with

i 1 n n
Pitign = =5 kT (n— aj+ - ai) . 6D

2 Mg

1.2 1.2
0.8
p 0.6
0.4
0.2

0.8
p 0.6

= T=108
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p 0.6 'f
0.4 !

02

0 S e ]J
02 04 06 08
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Fig. 5. The pressure in the isotropic and nematic phases as
function of the density for the reduced temperatures 7' =
1.12, 1.10 (top) and T" = 1.08, 1.06 (bottom) for the model
system with €; = 0.04, e, = —0.08. The dashed curves are
for the Lennard—Jones liquid. The physical quantities are in
standard LJ units.

In Fig. 5 the pressure curves for the isotropic and
the nematic phases are displayed as functions of the
density for the temperatures 7'/ T = 1.12,1.10 (top)
and T/Tyes = 1.08, 1.06 (bottom). The model system
studied is charcterized by €¢; = 0.04,¢; = —0.08.
The dashed curves, shown for comparison, are for
the LJ fluid. In all four figures, the outer most curves
pertain to the nematic phase. For a given pressure,
the density in the nematic phase is higher than in the
isotropic phase. Notice that at the higher temperatures
(top), the nematic state can only be reached at a finite
pressure, whereas at the lower temperatures (bottom),
the nematic and isotropic phases can coexist at zero
pressure.

4.5. A Qualitative Phase Diagram

The limits of stability of the gas and of the isotropic
liquid as inferred from the spinodal where one has
dp/on = 0, and from p = 0, are indicated in Fig. 6,
in the temperature—density plane, for the model fluid
with the non-sphericity parameters ¢; = 0.04,¢; =
—0.08. The thick line on the right marks the locus
where the coefficient A, in the free energy vanishes,
which is close to the isotropic—nematic phase tran-
sition. Even without a detailed analysis of the free
energy which would require a Maxwell construc-
tion for coexisting states, the curves shown provide a
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Fig. 6. Phase diagram for the model system with ¢ =
0.04,¢e, = —0.08. The thick line on the right marks the
pseudo—critical temperature where the coefficient A, van-
ishes. The other curves indicate the limits of stability in
the isotropic phase as infered from the spinodal where

dp/on = 0 (n < 0.4) and from p = 0 (n > 0.4). The
physical quantities are in standard LJ units.

qualitative phase diagram indicating for which tem-
peratures and densities a gas, an isotropic liquid or a
nematic liquid crystalline phase is expected.

5. Concluding Remarks

In this article, the augmented van der Waals ap-
proach has been extended to a specific type of non—
spherical interaction potential. For a special case, ex-
plicit expressions have been obtained and displayed
graphically for the pressure in the gaseous, in the
isotropic liquid and in the nematic liquid crystalline
phases, as well as for the isotropic—nematic transi-
tion temperature. It is expected that the liquid crystal
model considered here also possesses smectic phases.
Their possible occurrence, in particular the phase tran-
sition nematic—smectic A can be studied by similar
methods.

The model potential introduced in Sect. 2 is well
suited for numerical studies of equilibrium and non-
equilibrium material properties of liquid and liquid
crystalline substances, both in bulk and in restricted
geometries. The considerations presented here can
serve as guide lines for the choice of model param-
eters and state variables even when the mean field
theory, together with the approximations discussed
above, has only a limited quantitative accuracy. Of
course, also further analytic calculations are desir-
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able, in particular the computation of the Frank elas-
ticity coefficients and of interfacial properties along
the lines indicated in [38].
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Appendix: Directional Averages

The averages of the quantity ¥, defined in (9), and
of W2, over the unit vector #, needed in the previous
calculations, are:

@m)! / a1, ug, P = €10, (1) (13) (58)
+ €40k (WD)Puuac(U2) = €15P + €49 Py,
(4m)! / @ (ur, uz, 120 = (@ (1) Py (12))?

+ 26 (540 1) 0 (u))

+ & 0w Pua2) Pre(u)) Pru(us)
+ 26 €3 (0 (wr) + @ (1)) Pur(ur) oa(uz)

+ 6421 (‘puu/\n(ul)souuz\n(UZ))z (59)

+ & 0 () Prn(2) Pp(ur) Prn(uz)
+ 2€1€4008(11)Pap(2)Puure (U1) P uuak (U2)
= 5P +106 (1+P,)
+ €5(25/12) 2Pf — P, +1)
+2663(10/3) G (14 Po) + (9 Py)?
+ €2(5/14) (P? + 10P, +25) + 90€,e4 P, Py.  (60)

The Legendre polynomials occurring here depend on
u - uy. Furthermore, the relations (P;)o = (Ps)o =
(PaPs)o = 0, (P)o = 1/5, (P{)o = 1/9, (P})o
= 2135, (PyP})o = 2/35, (P,P})o = 20/693, and
(P})o = 18/1001 are used to obtain the expressions
(46) and (48). Notice that P = (18/35) P, + (2/7) P,
+ 1/5.
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